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1. SUMMARY OF ADDRESSED TASKS AND ACCOMPLISHMENTS
We have directed our efforts towards solving the problems associated with Objective 1: Devel-
opment of General Multidecision Theory of Sequential Hypothesis Testing and specifically Task
1: Development of Nearly Optimal Multidecision Sequential Rules for Testing Multiple Com-
posite Hypotheses. In particular, we proposed three sequential tests of composite hypotheses and
formulated general conditions under which these tests are asymptotically optimal when error prob-
abilities approach zero. Theses conditions are related to the strong law of large numbers (SLLN)
for the log-likelihood ratios of hypotheses and rates of convergence in the SLLN. The general
theory covers a variety of popular models such as Markov and hidden Markov models and their
generalizations.

2. MAIN RESULTS

2.1. General Theory of Sequential Testing Multiple Composite Hypotheses

2.1.1. The Problem and Structure of Sequential Tests

Consider the following general scenario of testing multiple composite hypotheses associated with
non-iid stochastic models. Let (Ω,F ,Fn,Pθ), n = 1, 2 . . . , be a filtered probability space
with standard assumptions about monotonicity of the σ-algebras Fn. The vector parameter θ =
(θ1, . . . , θ`) belongs to a subset Θ̃ of `-dimensional Euclidean space. The sub-σ-algebra Fn =
FX
n = σ(Xn

1 ) of F is generated by the stochastic process Xn
1 = (X1, . . . , Xn)n>1 observed up

to time n. The hypotheses to be tested are “Hi : θ ∈ Θi”, i = 0, 1, . . . , N (N > 1), where Θi

are disjoint subsets of Θ̃. We will also suppose that there is an indifference zone Iin ∈ Θ̃ in which
there are no constraints on the probabilities of errors imposed. The indifference zone, where any
decision is acceptable, is usually introduced keeping in mind that the correct action is not critical
and often not even possible when the hypotheses are too close, which is perhaps the case in most,
if not all, practical applications. However, in principle Iin may be an empty set. The probability
measures Pθ and Pθ̃ are assumed to be locally mutually absolutely continuous. By pθ(Xn|Xn−1

1 ),
n > 1 we denote corresponding conditional densities which may depend on n.

A multihypothesis sequential test δ = (T, d) consists of the pair (T, d), where T is a stop-
ping time with respect to the filtration {Fn}n>0, and d = dT (XT

1 ) ∈ {0, 1, . . . , N} is an FT -
measurable (terminal) decision rule specifying which hypothesis is to be accepted once observa-
tions have stopped (the hypothesis Hi is accepted if d = i and rejected if d 6= i, i.e., {d = i} =
{T <∞, δ accepts Hi}). The quality of a sequential test is judged on the basis of its error prob-
abilities and expected sample sizes or more generally on the moments of the sample size. Let
αij(δ,θ) = Pθ(d = j)1l{θ∈Θi} (i 6= j, i, j = 0, 1, . . . , N ) be the probability of accepting the hy-
pothesis Hj by the test δ when the true value of the parameter θ is fixed and belongs to the subset
Θi and let βi(δ, θ) = Pθ(d 6= i)1l{θ∈Θi} be the probability of rejecting the hypotheses Hi when it is
true. Introduce the following two classes of tests

C(||αij||) =

{
δ : sup

θ∈Θi

αij(δ,θ) 6 αij, i, j = 0, 1, . . . , N, i 6= j

}
,

C(β) =

{
δ : sup

θ∈Θi

βi(δ,θ) 6 βi, i = 0, 1, . . . , N

} (1)

3
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for which maximal error probabilities do not exceed the given numbers αij and βi.

The Generalized Matrix Sequential Likelihood Ratio Test. Define the generalized LR statistics

Λ̂i
n =

supθ∈Θ

∏n
k=1 pθ(Xk|Xk−1

1 )

supθ∈Θi

∏n
k=1 pθ(Xk|Xk−1

1 )
=

∏n
k=1 pθ?n(Xk|Xk−1

1 )

supθ∈Θi

∏n
k=1 pθ(Xk|Xk−1

1 )
, i = 0, 1, . . . , N, (2)

where θ?n = arg supθ∈Θ pθ(Xn
1 ) is the MLE estimator. The first multihypothesis test, which we

will refer to as the Multihypothesis Generalized Sequential Likelihood Ratio Test (MGSLRT), is of
the form

stop at the first n > 1 such that for some i Λ̂j
n > Aji for all j 6= i (3)

and accept the (unique) Hi that satisfies these inequalities, where Aij are positive and finite num-
bers (thresholds).

The Adaptive Matrix Sequential Likelihood Ratio Test. Let θ̂n = θ̂n(X1, . . . , Xn) be an esti-
mator of θ (not necessarily the MLE). If in conditional density pθ(Xk|Xk−1

1 ) for the kth observation
given the previous data Xk−1

1 = (X1, . . . , Xk−1) we replace the parameter by the estimate θ̂k−1

built upon the sample Xk−1
1 that includes k − 1 observations, then pθ̂k−1

(Xk|Xk−1
1 ) is still a vi-

able probability density, in contrast to the case of the GLR approach where pθ̂n(Xk|Xk−1
1 ) is not a

probability density anymore for k 6 n. Therefore, the statistic

Λ̌n(θi) =
n∏
k=1

pθ̂k−1
(Xk|Xk−1

1 )

pθi(Xk|Xk−1
1 )

= Λ̌n−1(θi)×
pθ̂n−1

(Xn|Xn−1
1 )

pθi(Xn|Xn−1
1 )

(4)

is a viable likelihood ratio, and it is the nonnegative Pθi-martingale with unit expectation, since
Eθi [Λ̌n(θi)|Xn−1

1 ] = Λ̌∗n−1(θi). Therefore, one can use Wald’s likelihood ratio identity for finding
bounds on error probabilities if Λ∗n(θi) is used instead of the LR with the true parameter value θ.
Because of exactly this very convenient property as well as of the simple recursive structure (4)
the hypothesis tests based on the adaptive LRs with one-stage delayed estimators represent a very
attractive alternative to the GLR tests as well to the mixture-based tests introduced below.

Define the statistics

Λ̌i
n =

∏n
k=1 pθ̂k−1

(Xk|Xk−1
1 )

supθ∈Θi

∏n
k=1 pθ(Xk|Xk−1

1 )
, i = 0, 1, . . . , N. (5)

The second multihypothesis test, which we will refer to as the Multihypothesis Adaptive Sequential
Likelihood Ratio Test (MASLRT), has the form

stop at the first n > 1 such that for some i Λ̌j
n > Aji for all j 6= i (6)

and accept the (unique) Hi that satisfies these inequalities.
It is convenient to re-write the MASLRT (6) in the following form. Introducing the statistics

`∗n =
n∑
k=1

log pθ̂k−1
(Xk|Xk−1

1 ), `in = sup
θ∈Θi

n∑
k=1

log pθ(Xk|Xk−1
1 )

4
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the MASLRT can be written as

T ∗ = min
06i6N

T ∗i , d∗ = i if T ∗ = T ∗i , (7)

where

T ∗i = inf

n > 1 : `∗n > max
06j6N
j 6=i

[`jn + aji]

 , aij = logAij, i = 0, 1, . . . , N. (8)

The Weighted (Mixture-based) Sequential Likelihood Ratio Test. Yet another approach is to
use mixtures of LRs (weighted LRs) in test constructions. This approach was proposed by Wald [6]
in his seminal work on the SPRT and its extensions to two composite hypotheses.

Define the weighted LRs

Λ̄i
n =

∫
Θ

∏n
k=1 pθ(Xk|Xk−1

1 )W (dθ)∫
Θi

∏n
k=1 pθ(Xk|Xk−1

1 )Wi(dθ)
, i = 0, 1, . . . , N, (9)

where the weight functions W (θ), Wi(θ), i = 0, 1, . . . , N , are not necessarily normalized to 1. If
the weights are normalized to 1, then they can be regarded as probability distributions. Let {Aij}
(i 6= j) be positive numbers. The multihypothesis weighted SLRT (MWSLRT) δ̄ = (T̄ , d̄) is of the
form

stop at the first n > 1 such that for some i Λ̄j
n > Aji for all j 6= i (10)

and accept the Hi that satisfies these inequalities.
Taking logarithms and writing

¯̀
n = log

∫
Θ

n∏
k=1

pθ(Xk|Xk−1
1 )W (dθ), ¯̀i

n = log

∫
Θi

n∏
k=1

pθ(Xk|Xk−1
1 )Wi(dθ),

the MWSPRT can be also expressed as

T̄ = min
06i6N

T̄i, d̄ = i if T̄ = T̄i (11)

where

T̄i = inf

n > 1 : ¯̀
n > max

06j6N
j 6=i

[¯̀jn + logAji]

 , i = 0, 1, . . . , N. (12)

2.1.2. Probabilities of Errors

One of the most important issues is to obtain upper bounds and approximations for error probabil-
ities of the introduced tests. However, we do not know how to upper-bound the error probabilities
of the MGSLRT and the MWSLRT. The reason is that the statistics Λ̂i

n are not likelihood ratios
anymore so that the change-of-measure argument (Wald’s likelihood ration identity) cannot be
applied. Some asymptotic approximations still can be obtained in the iid case for `-dimensional
exponential families using large and moderate deviations:

sup
θ∈Θi

Pθ(d̂ = j) =
(logAji)

`/2

Aji
+O(1) as min

ij
Aij →∞. (13)

5



IPR ARO Grant # W911NF-13-1-0073: General Multidecision Theory: Hypothesis Testing and Changepoint Detection with Applications to Homeland Security

(cf. Chan and Lai [1]). In the general non-iid case this is still an open problem.
As we mentioned above, in this respect the MASLRT has a big advantage over the MGSLRT

to the expense of some loss of performance due to one-stage delayed estimators. Write α∗ij(θ) =
Pθ(d∗ = j)1l{θ∈Θi} for the error probabilities of the MASLRT. We now show that supθ∈Θi

α∗ij(θ) 6
1/Aij , i 6= j, so that Aij = 1/αij implies δ∗ ∈ C(||αij||).

Theorem 1. Let α∗ij(θ) = Pθ(d∗ = j)1l{θ∈Θi} and β∗i (θ) = Pθ(d∗ 6= i)1l{θ∈Θi}, i = 0, 1, . . . , N be
the error probabilities of the MASLRT δ∗ = (d∗, T ∗). The following inequalities hold:

(i) supθ∈Θi
α∗ij(θ) 6 1/Aij for i, j = 0, 1, . . . , N , i 6= j ;

(ii) supθ∈Θi
β∗i (θ) 6

∑
j 6=iA

−1
ij for i = 0, 1, . . . , N .

Proof. Since {d∗ = j} = {T ∗ = T ∗j } implies {T ∗j <∞}, we have

α∗ij(θ) = Eθ1l{d∗=j} 6 Eθ1l{T ∗
j <∞} = Eθ

[
1l{T ∗

j <∞}Λ̌T ∗
j
(θ)/Λ̌T ∗

j
(θ)
]

for all θ ∈ Θi.

By the definition of T ∗j , Λ̌i
T ∗
j
> eaij and clearly Λ̌T ∗

j
(θ) > Λ̌i

T ∗
j

for all θ ∈ Θi. Therefore, for
all θ ∈ Θi,

α∗ij(θ) 6 Eθ

[
1l{T ∗

j <∞}Λ̌T ∗
j
(θ)/Λ̌T ∗

j
(θ)
]
6 e−aijEθ

[
1l{T ∗

j <∞}Λ̌T ∗
j
(θ)
]

= e−aij ,

where the last equality follows from the Wald likelihood ratio identity. This proves (i).
Part (ii) follows immediately from the fact that

β∗i (θ) 6
∑
j 6=i

Pθ(T ∗j <∞) 6
∑
j 6=i

e−aij

and the proof is complete.

Therefore, we have the following important implications:

Aij = 1/αij =⇒ δ∗ ∈ C(||αij||); (14)
Aij = Ai = N/βi =⇒ δ∗ ∈ C(β). (15)

We note that generally there are no such inequalities for the MGSLRT and the MWSLRT.

2.1.3. Near Optimality

The developed asymptotic hypothesis testing theory is based on the SLLN and rates of convergence
in the strong law for the LLR processes, specifically by strengthening the strong law into the r-
quick version.

Definition 1. For r > 0, the random variable ξn is said to converge P-r-quickly to a constant C if
ELrε <∞ for all ε > 0, where Lε = sup {n : |ξn − C| > ε} (sup∅ = 0).

6
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Note that P(Lε <∞) = 1 for all ε > 0 is equivalent to the P-a.s. convergence of ξn to C.
Write λn(θ, θ̃) = log

dPnθ
dPn

θ̃

=
∑n

k=1 log
pθ(Xk|Xk−1

1 )

pθ̃(Xk|Xk−1
1 )

for the log-likelihood ratio (LLR) process.

Assume that there exist positive and finite numbers I(θ, θ̃) such that

1

n
λn(θ, θ̃)

Pθ−r−quickly−−−−−−−→
n→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ, θ 6= θ̃. (16)

In addition, we certainly need some conditions on the behavior of the estimate θ̂n for large n,
which should converge to the true value θ in a proper way. To this end, we require the following
condition on the adaptive LLR process:

1

n
log Λ̌n(θ̃)

Pθ−r−quickly−−−−−−−→
n→∞

I(θ, θ̃) for all θ, θ̃ ∈ Θ, θ 6= θ̃, (17)

so that the normalized by n LLR tuned to the true parameter value and its adaptive version converge
to the same constants. In certain cases, but not always, conditions (16) and (17) imply the following
conditions

1

n
log Λ̌i

n

Pθ−r−quickly−−−−−−−→
n→∞

Ii(θ) for all θ ∈ Θ \Θi, i = 0, 1, . . . , N, (18)

where Ii(θ) = inf θ̃∈Θi
I(θ, θ̃), the minimal “distance” from θ to the set Θi is assumed to be

positive for all i. Let

Ji(θ) = min
06j6N
j 6=i

[Ij(θ)/cji] for θ ∈ Θi, J(θ) = max
06i6N

Ji(θ) for θ ∈ Iin, (19)

and

J∗i (θ) = min
06j6N
j 6=i

[Ij(θ)/cj] for θ ∈ Θi, J
∗(θ) = max

06i6N
min
06j6N
j 6=i

[Ij(θ)/cj] = max
06i6N

J∗i (θ) for θ ∈ Iin,

(20)
where cij = limαmax→0 | logαij|/| logαmax|, αmax = maxi,j αij , ci = limβmax→0 | log βi|/| log βmax|,
βmax = maxi βi.

The following theorem establishes uniform asymptotic optimality of the MASLRT in the gen-
eral non-iid case with respect to moments of the stopping time distribution. The proof is based
on the technique developed by Tartakovsky [5] for multiple simple hypotheses. It is very lengthy
and therefore omitted. We just mention that it includes a two-step procedure: first to obtain the
asymptotic lower bounds for moments of the stopping time distribution infδ∈C(||αij ||)(C(β)) Eθ[T ]m,
θ ∈ Θi, m > 0, i = 0, 1, . . . , N , and then to show that these lower bounds are attained for the
procedure of interest.

Theorem 2 (Asymptotic Optimality). Assume that r-quick convergence conditions (16) and (18)
are satisfied.
(i) If the thresholds Aij are so selected that supθ∈Θi

α∗ij(θ) 6 αij and logAij ∼ log(1/αij), in
particular Aij = 1/αij , then for m 6 r as αmax → 0

inf
δ∈C(||αij ||)

EθT
m ∼ Eθ[T ∗]m ∼

{
[| logαmax|/Ji(θ)]m for all θ ∈ Θi and i = 0, 1, . . . , N

[| logαmax|/J(θ)]m for all θ ∈ Iin,
(21)

7
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where the functions Ji(θ), J(θ) are defined as in (19).
(ii) If the thresholds Aij = Ai are so selected that supθ∈Θi

β∗i (θ) 6 βi and logAi ∼ log(1/βi, in
particular Ai = N/βi, then for m 6 r as βmax → 0

inf
δ∈C(β)

EθT
m ∼ Eθ[T ∗]m ∼

{
[| log βmax|/J∗i (θ)]m for all θ ∈ Θi and i = 0, 1, . . . , N

[| log βmax|/J∗(θ)]m for all θ ∈ Iin,
(22)

where the functions J∗i (θ), J∗(θ) are defined as in (20).
Consequently, the MASLRT minimizes asymptotically the moments of the sample size up to

order r uniformly in θ ∈ Θ in the classes of tests C(||αij||) and C(β).

This theorem generalizes previous results of Pavlov [4] and Dragalin and Novikov [2] restricted
to iid exponential families, and also provides alternative conditions in iid cases that can be often
easily checked.

Remark 1. The assertions of Theorem 2 of course also hold for the MGSLRT and MWSPRT
when the r-quick convergence conditions (18) are satisfied for the GLR statistics λ̂n(Θi) = ˆ̀

n−`in
and the mixtures λ̄in. However, we stress that there are no simple upper bounds for the error
probabilities of the MGSLRT and the MWSPRT. Furthermore, while for iid exponential fami-
lies certain asymptotic approximations for the error probabilities can be obtained based on the
boundary-crossing framework and large deviations (see Chan and Lai [1], Lorden [3]), for general
non-iid models no such results exist.

Remark 2. The assertions of Theorem 2 remain true if the normalization by n in (18) is replaced
with the normalization by ψ(n), where ψ(t) is an increasing function, ψ(∞) = ∞, in which case
[| logαmax|/Ji(θ)]m in (21) should be replaced with Ψ([| logαmax|/Ji(θ)]m), where Ψ is inverse
to ψ, and similarly in (22).

We now consider two interesting examples.

2.1.4. Testing for the Gaussian Mean with Unknown Variance

Consider the Gaussian example assuming thatXn ∼ N (µ, σ2), n = 1, 2, . . . are iid normal random
variables with unknown mean µ and unknown variance σ2 and the hypotheses are H0 : µ 6
µ0, σ

2 > 0 and H1 : µ > µ1, σ
2 > 0, where µ1, µ0 are given numbers, µ1 > µ0. The variance σ2 is

a nuisance parameter.
In the following we consider a specific case H0 : µ = 0 and H1 : µ > µ1 (µ1 > 0). This

problem is of special interest in certain applications. For example, when detecting targets in
noise/clutter the observations have the form Xn = µ + Vn if there is a target and Xn = Vn if
there is no target. The value of µ, µ > 0 characterizes the intensity of the signal from the target;
Vn is sensor noise or clutter plus noise. Assuming that {Vn}n>1 is zero-mean white Gaussian noise
with unknown variance σ2, we arrive at this problem. In radar applications, µ usually represents
the result of the preprocessing by attenuation and matched filtering of the modulated pulses and,
also, is not known. The value of µ1 > 0 is a prespecified limit or cut-off intensity of the target. In
this interpretation the value of q = µ/σ represents an unknown signal-to-noise ratio and q1 = µ1/σ
is a given cut-off signal-to-noise ratio level. Thus, we are dealing with the two-hypotheses prob-
lem (N = 1) for the two-dimensional exponential model with the parameter θ = (µ, σ2) and
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parameter space Θ = [0,∞) × (0,∞). Also, Θ0 = {0} × (0,∞), Θ1 = [µ1,∞) × (0,∞), and
Iin = (0, µ1)× (0,∞).

We now show that all the conditions of Theorem 2 are satisfied when {θ̂n} is a sequence of
MLEs, which implies the uniform asymptotic optimality of the 2-ASPRT with ai = log(1/αi),
i = 0, 1.

Let θ̃ = (µ̃, σ̃2), where µ̃ and σ̃ are arbitrary numbers, µ̃ > 0, σ̃ > 0. Then the LLR λn(θ, θ̃) =

`n(θ)− `n(θ̃) =
∑n

k=1 log[pθ(Xk)/pθ̃(Xk)] is given by

λn(θ, θ̃) =
n

2
log

(
σ̃2

σ2

)
+
σ2 − σ̃2

2σ̃2σ2

n∑
k=1

X2
k

+
µσ̃2 − µ̃σ2

σ̃2σ2

n∑
k=1

Xk −
µ2σ̃2 − µ̃2σ2

2σ̃2σ2
n.

(23)

Using (23), it is not difficult to show that

I(θ, θ̃) =
1

2

{
[(µ− µ̃)2 + σ2]/σ̃2 + log(σ̃2/σ2)− 1

}
. (24)

The minimum
min
σ̃>0

I(θ, θ̃) =
1

2
log
[
1 + (µ− µ̃)2/σ2

]
is achieved at the point σ̃∗ = [σ2 + (µ− µ̃)2]1/2 and I1(θ) = minµ̃>µ1 minσ̃>0 I(θ, θ̃) and I0(θ) =

minµ̃∈{0}minσ̃>0 I(θ, θ̃) equal

I1(q) =

{
1
2

log[1 + (q1 − q)2] for 0 6 q < q1

0 for q > q1

,

I0(q) =
1

2
log(1 + q2) for q > 0,

(25)

where q = µ/σ and q1 = µ1/σ. Thus, as expected, the initial two-dimensional hypothesis testing
problem is reduced to the equivalent single-parameter testing problem H0 : q = 0 against H1 : q >
q1 with the parameter space Q = [0,∞) and subsets Q0 = {0}, Q1 = [q1,∞), Iin = (0, q1).

Clearly, I0(q) > 0 for q ∈ Q1+Iin = (0,∞) and I1(q) > 0 for q ∈ Q0+Iin = [0, q1), and hence,
min[I0(q), I1(q)] > 0 for q ∈ Iin = (0, q1). Also, it is easily verified that infq∈Q max[I0(q), I1(q)c] >
0 for any 0 < c < ∞. In fact, the maximum is attained at the point q∗ ∈ (0, q1) for which
I0(q∗) = I1(q∗)c, and it is a solution of the equation

(1 + q2)1/c = 1 + (q1 − q)2. (26)

In particular, q∗ = q1/2 and infq∈Q max[I0(q), I1(q)c] = log(1 + q2
1/4) for c = 1. Therefore, the

conditions related to the minimal Kullback–Leibler ( K–L) distances for the corresponding sets
hold, and it remains to deal with convergence of the LLR and associated statistics.

Not surprisingly we choose θ̂n = (µ̂n, σ̂
2
n) as the maximum likelihood estimator,

(µ̂n, σ̂
2
n) = arg sup

µ>0,
σ2>0

λn(µ, σ2, µ̃, σ̃2),

9
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which is of course a combination of the positive part of the sample mean and sample variance, i.e.,

µ̂n = max{0, Xn}, σ̂2
n = n−1

n∑
k=1

(Xk − µ̂n)2,

where Xn = n−1
∑n

k=1Xk is the sample mean.
First, since the LLR {λn(θ, θ̃)}n>1 given by (23) is a random walk with drift I(θ, θ̃) and

Eθ|λ1(θ, θ̃)|r <∞ for all positive r, it follows that

n−1λn(θ, θ̃)
Pθ-r-quickly−−−−−−→
n→∞

I(θ, θ̃) for all r > 0.

Hence, the conditions (16) are satisfied with I(θ, θ̃) equal the K–L numbers given by (24) and
θ = (µ, σ2).

Write
λ̌in = log Λ̌i

n, λ̌n(θ̃) = log Λ̌n(θ̃).

Note that λ̌in = λ̌n − λin, i = 0, 1. Since X1, X2, . . . are iid and Eθ|X1|r < ∞ for all r > 0, the
following r-quick convergence conditions hold as n→∞ under Pθ:

µ̂n → µ, µ̂2
n → µ2, σ̂2

n → σ2, σ2
n,0 → σ2 + µ2, ∀µ > 0, σ2 > 0,

µn,1 →

{
µ if µ > µ1

µ1 if 0 6 µ < µ1

, σ2
n,1 →

{
σ2 if µ > µ1

σ2 + (µ− µ1)2 if 0 6 µ < µ1.

Using these relations, it can be verified that Pθ-r-quickly as n→∞

n−1λ∗n →
(
µ2 + σ2 − log σ2 − 1

)
/2, ∀µ > 0, σ2 > 0;

n−1λ0
n →

[
µ2 + σ2 − log(µ2 + σ2)− 1

]
/2, ∀µ > 0, σ2 > 0;

n−1λ1
n →

{
(µ2 + σ2 − log σ2 − 1) /2 if µ > µ1, σ

2 > 0

{µ2 + σ2 + log[σ2 + (µ− µ1)2]− 1} /2 if 0 6 µ < µ1, σ
2 > 0.

Combining these formulas yields

n−1λ̌in
Pθ-r-quickly−−−−−−→
n→∞

Ii(θ), θ ∈ Θ \Θi, i = 0, 1 for all r > 0, (27)

where I1(θ) = minµ̃>µ1 minσ̃>0 I(θ, θ̃) ≡ I1(q) and I0(θ) = minµ̃∈{0}minσ̃>0 I(θ, θ̃) ≡ I0(q)
are given by

I1(q) = 1/2 log[1 + (q1 − q)2] for 0 6 q < q1; I0(q) = 1/2 log(1 + q2) for q > 0,

q = µ/σ, q1 = µ1/σ (cf. (25)).
Therefore, the conditions (18) are satisfied with Ii(θ) = Ii(q). By Theorem 2, the 2-ASPRT

is asymptotically uniformly optimal in the sense of minimizing all the positive moments of the
stopping time distribution: for all r > 1 as αmax → 0

inf
δ∈C(α0,α1)

EθT
r ∼ Eθ[T ∗]r ∼

{
{2| logα1|/ log[1 + (q1 − q)2]}r if 0 6 q 6 q∗

{2| logα0|/ log[1 + q2]}r if q > q∗.

10
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In addition,
inf

δ∈C(α0,α1)
sup
θ∈Θ

EθT
r ∼ Eθ∗ [T ∗]r ∼ {2| logα0|/ log[1 + (q∗)2]}r,

where q∗ ∈ (0, q1) is the solution of the equation (26).
These asymptotics are also true for the GSLRT and the WSPRT if the thresholds are selected

so that the logarithms of the error probabilities of these tests are asymptotic to logαi.

2.1.5. Testing for a Nonhomogeneous AR Sequence

Let
Xn = θ · Sn + ξn, n = 1, 2, . . . ,

where Sn is a deterministic function and {ξn}n>1 is a stable first-order AR Gaussian sequence
given by the recursion

ξn = γ ξn−1 + ζn, n > 1,

where ζ1, ζ2, . . . are iid Gaussian variables, ζk ∼ N (0, σ2), and |γ| < 1. For the sake of concrete-
ness we set ξ0 = 0 and S0 = 0, while all the results are true for arbitrary deterministic or random
initial conditions. The hypotheses are H0 : θ 6 θ0 and H1 : θ > θ1, where θ0 < θ1 are given
numbers. That is, Θ = (−∞,∞), Θ0 = (−∞, θ0], Θ1 = [θ1,∞), Iin = (θ0, θ1). In this case, the
LLR can be written in the form

λn(θ, θ̃) =
θ − θ̃
σ2

n∑
k=1

S̃k X̃k −
θ2 − θ̃2

2σ2

n∑
k=1

S̃2
k ,

where X̃k = Xk − γXk−1, S̃k = Sk − γSk−1 (X0 = S0 = 0). Direct computation shows that

Eθ[λn(θ, θ̃)] =
(θ − θ̃)2

2σ2

n∑
k=1

S̃2
k .

Suppose that

lim
n→∞

n−1

n∑
k=1

S̃2
k = S̃2, (28)

where S̃2 is a positive and finite number. Then, for all θ, θ̃ ∈ (−∞,∞) (θ 6= θ̃),

n−1λn(θ, θ̃)→ (θ − θ̃)2S̃2

2σ2
Pθ − r − quickly for all r > 0. (29)

Indeed, under Pθ, the whitened observations X̃n can be written as X̃n = θS̃n + ζn and the LLR as

λn(θ, θ̃) =
θ − θ̃
σ2

Vn +
(θ − θ̃)2

2σ2

n∑
k=1

S̃2
k ,

where Vn =
∑n

k=1 S̃kζk is a weighted sum of iid normal random variables. Since EVn = 0

and, by (28), for large n EV 2
n ∼ S̃2n, it is obvious that there exists a number δ < 1 such that

P(|Vn| > εn) 6 O(δn), which yields
∞∑
n=1

nr−1P(|Vn| > εn) <∞ for some ε > 0 and all r > 0. (30)

11



IPR ARO Grant # W911NF-13-1-0073: General Multidecision Theory: Hypothesis Testing and Changepoint Detection with Applications to Homeland Security

In other words, Vn/n converges to 0 r-quickly, which implies (29). Hence, the conditions (16)
hold with I(θ, θ̃) = (θ − θ̃)2S̃2/2σ2, and it remains to check the conditions (18), where

I1(θ) = inf
θ̃>θ1

I(θ, θ̃) =
(θ1 − θ)2S̃2

2σ2
for θ < θ1,

I0(θ) = inf
θ̃6θ0

I(θ, θ̃) =
(θ − θ0)2S̃2

2σ2
for θ > θ0.

(31)

As the estimate θ̂n, we of course use the MLE
∑n

k=1 S̃kX̃k/
∑n

k=1 S̃
2
k . Moreover let θ̂n,1 =

max(θ1, θ̂n) and θ̂n,0 = min(θ0, θ̂n). Then the statistics λ̌in can be written as

λ̌in =
1

σ2

n∑
k=1

(θ̂k−1 − θ̂n,i)S̃kX̃k −
1

2σ2

n∑
k=1

(θ̂2
k−1 − θ̂2

n,i)S̃
2
k , i = 0, 1.

Using an argument similar to that has led to (30) with a minor generalization, we conclude that,
r-quickly under Pθ,

θ̂n → θ, θ̂n,1 → max(θ1, θ), θ̂n,0 → max(θ0, θ), θ̂2
n → θ2,

θ̂2
n,1 → max(θ2

1, θ
2), θ̂2

n,0 → max(θ2
0, θ

2), n−1

n∑
k=1

S̃kX̃k → θ2S̃2,

which after some manipulations yield

n−1λin
Pθ-r-quickly−−−−−−→
n→∞

Ii(θ), θ ∈ Θ \Θi, i = 0, 1 for all r > 0,

where the Ii(θ)’s are given by (31).
Thus, by the Theorem 2, the 2-ASPRT is asymptotically optimal, minimizing all the positive

moments of the sample size: for all r > 1 as αmax → 0,

inf
δ∈C(α0,α1)

EθT
r ∼ Eθ[T

∗]r ∼

{
{2| logα1|/[(q1 − q)2S̃2]}r if q 6 q∗

{2| logα0|/[(q − q0)2S̃2]}r if q > q∗,

where q = θ/σ, qi = θi/σ, and q∗ is a solution of the equation

| logα0|/[(q − q0)2 = | logα1|/(q1 − q)2.

In particular, if Sn = 1, then S̃2 = (1− γ)2.
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